
官权学
副教授
E-mail:guanqx3@mail.sysu.edu.cn
研究方向:主要的研究兴趣包括人工智能和先进控制算法在新型电力系统、电力电子变换器、电化学系统中的应用,近期主要聚焦在与锂电池充电相关的领域,包括1. 锂电池快速充电策略及状态估计(偏电化学、电池管理系统),2. 超级充电桩的设计及控制(偏电力电子、控制工程),3. 充电网络运营优化(偏电力市场、交能融合)。
个人主页:https://sites.google.com/site/guanquanxue/
教师简介
官权学,博士,副教授,硕士生导师,中山大学“百人计划”人才引进。2007年毕业于华南理工大学,获自动化专业学士学位。随后在喜利得(中国)有限公司工作。2009年至2016年在华南理工大学硕博连读,硕士专业为控制理论与控制工程,博士阶段转至电力学院,获电力电子与电力传动专业工学博士学位。2013年获广州市菁英计划资助前往英国诺丁汉大学访问研究一年。2016年加入中山大学,任特聘副研究员,随后在广东工业大学做博士后,并于2017年10月前往英国诺丁汉大学任Research Fellow直至2020年12月底。2021年1月起任中山大学智能工程学院副教授。
学科方向
所在学科:控制理论与控制工程,电力电子与电力传动,电子信息。
研究方向:主要的研究兴趣包括人工智能和先进控制算法在新型电力系统、电力电子变换器、电化学系统中的应用,近期主要聚焦在与充电相关的领域,包括1. 锂电池快速充电策略及状态估计(偏电化学与电池管理系统),2. 超级充电桩的设计及控制(偏电力电子),3. 充电网络运营优化(偏电力系统与电力市场)。拓展的研究方向包括虚拟电厂(PMU等嵌入轻量级AI算法的电网智能感知单元和边缘控制装置,电力负荷及价格预测,充电站及储能电站的选址定容,规模化分布式资源的能量管理),第三代半导体功率器件的封装集成与驱动(氮化钾双向开关、碳化硅MOSFET与硅IGBT的混合封装),电力电子变换器的控制及应用(矩阵变换器、隔离型双向DC/DC变换器、模块化多电平变换器等电路拓扑及其在电动汽车集成驱动、充电桩电源模块、电力电子变压器、交流低频输电、风能转换系统中的应用)。
合作情况:本人长期与英国诺丁汉大学,德国慕尼黑工业大学,瑞士苏黎世联邦理工学院、洛桑联邦理工学院,荷兰代尔夫特理工大学、丹麦奥尔堡大学等国外大学,与哈尔滨工业大学、东南大学、浙江大学、香港中文大学、香港理工大学等国内大学的相关研究小组保持合作及交流互访。本人长期与工业界保持密切联系,包括但不限于广汽集团、南方电网、珠海泰坦科技、深城交、深检院、深圳市车电网、深圳道通新能源等。
承担课程:目前承担的课程有《电力电子技术》、《微机原理与接口技术》《嵌入式系统与设计》、《自动控制原理》、《最优化控制》等。
招生情况:每年招收研究生两名以上,欢迎有数学基础或者工程经验的本科生或硕士生报考,鼓励本科生提前进入实验室学习。所在新能源汽车研究团队同时长期招聘博士后、特聘副研究员及工程师,欢迎电邮咨询:电子邮箱:guanqx3@mail.sysu.edu.cn。
科研项目
•主持
- 超级充电桩关键技术研究与产业化,广东省重点领域研发计划项目课题,总资助额度1600万人民币(到校经费160万),资助编号:2023B0909050006,资助期限:2023.05.25–2026.12. 31,牵头组队申报,主要参与人,课题主持人,在研。
- 动力锂电池正反脉冲快速充电策略实时优化,深圳市科技计划面上项目,总资助额度30万人民币,资助编号:JCYJ20220530150005011,资助期限:2022.10.28–2025.10.31,主持人,在研。
- 共建平台(广汽)XPS-XN-1项目大功率快充动力电池双向脉冲技术研究服务,企业委托研发横向项目,总资助额度110万人民币,资助编号:HT-99982022-0200,资助期限:2022.03.01–2024.8.31,主持人,已结题。
- 基于氮化镓的高效双向脉冲电源系统开发, 广东省企业科技特派员研发项目,总资助额度25万人民币,资助编号:GDKTP2021044000,资助期限:2022.01.01–2023.09.26,主持人,已结题并依规获省级课题立项认定。
- 采用旋转矢量开关拓展调制矩阵变换器无功功率的机理和方法,国家自然科学基金青年科学基金项目,资助额度27万人民币,资助编号:51707042,资助期限:2018.1–2020.12,申请人,主持人。已结题。
• 主导
- 先进智能配电网系统Advanced Smart-Grid Power Distribution System (ASPIRE),跨国合作项目,欧盟地平线Horizon 2020 计划和清洁天空计划二期(Clean Sky II)联合资助项目,项目总额Grant amount: €820 162.00, 2016.09–2020.12。首要研究员,2019 年8月起实际主持。已结题。
• 参与
- 连接中压交流与低压直流的高效功率变换系统 Power Converter System Interfacing MVAC and LVDC,华为公司资助项目,项目总额 Grant amount: £540,700, 2019.12–2021. 12. CI, 主要研究员。
- 面向智能制造的网络化控制理论与关键技术Networked Control Theory and Key Technologies for Intelligent Manufacturing,国家自然科学基金NSFC-广东联合基金Joint Funds of the National Natural Science Foundation of China and Guangdong Province,资助额度300 万人民币,资助编号Grant: U1701264, 资助期限2018.1–2021.12.
- 基于K-V分布的带电粒子束流最优匹配跟踪与镇定控制理论Optimal Matching Tracking and Stabilization Control of Charged Particle Beam Based on K-V Distribution,国家自然科学基金青年科学基金项目Young Scientists Fund of the National Natural Science Foundation of China,资助额度 25 万人民币,资助编号 Grant: 61703114,资助期限 2018.1–2020.12.
• 感兴趣的实验室内部课题(欢迎有兴趣的学生参加)
–风能变换系统中的模块化多电平矩阵变换器(Modular Multilevel Matrix Converters for Wind Energy Conversion Systems)。研究目标:项目致力于为大型风电场开发大容量模块化多电平矩阵变换器,并将其应用在MW级风电机组及近岸变电站的功率变换系统中。项目将解决矩阵变换器的低电压传输比问题,同时使能低频交流输电以避免使用高压直流断路器。为了达到高电能转换效率,项目将使用第三代功率半导体器件SiC MOSFETs。研究内容:1)故障检测与诊断,2)拓扑优化,3)环电流抑制,4)新型调制算法,5)共模电压抑制,6)低频交流输电。
– GaN 基高功率密度比矩阵变换器(GaN-based High Power Density Matrix Converters)。研究目标:通过把GaN功率开关器件和驱动电路集成在单片IC的方式,从而将矩阵变换器的体积和重量减少到同功率等级的传统矩阵变换器的5%∼10% 左右,未来进一步将矩阵变换器集成到电机本体的设计中。研究内容:1)微波驱动和隔离技术,2)GaN 器件单片集成和封装技术,3)基于无源性控制的稳定性改善算法研究,4)新型调制算法,5)模型预测控制。
论著专利
• 部分期刊论文 (* 表示通讯作者)
[18] J. Liu, J. Zhu, Quanxue Guan*, Y. Luo, and X. Tang, “Hierarchical Energy Management and Charging Scheduling in the PV-CS-EV Integrated System,” IEEE Internet of Things Journal, 2025.
[17] L. Zheng, Quanxue Guan, X. Wang, Y. Su, and Y. Wu, “A Modified Adaptive Notch Filter for Resonance Suppression in Flexible Mechatronic Systems,” Asian Journal of Control, 2025.
[16] C. Chen, Q. Guan, Quanxue Guan, X. Jin, and Z. Shi, “Soft Fault Location and Imaging Using Residual Voltage Inversion in Cable Networks,” IEEE Transactions on Instrumentation and Measurement, vol. 74, p. 3509016, 2025, doi: 10.1109/TIM.2025.3542111.
[15] A. Sarajian, Quanxue Guan*, et al., “Enhanced Modulated Model Predictive Control for Matrix Converters in Overmodulation Zones,” IEEE Open Journal of Power Electronics, vol. 6, pp. 66–77, 2025, doi: 10.1109/OJPEL.2024.3512855.
[14] Quanxue Guan, Q. Liu, S. Tao, Y. Xu, D. Zhou, H. Chen and X. Tan, “Snake Optimizer Improved Variational Mode Decomposition for Short-Term Prediction of Vehicle Charging Loads,” IEEE Open Access Journal of Power and Energy, vol. 12, pp. 76–87, 2025, doi: 10.1109/OAJPE.202 5.3529944.
[13] Y. Zhang, L. Xu, S. Tao, Quanxue Guan, Q. Li, and H. Zeng, “CSLens: Towards Better Deploying Charging Stations via Visual Analytics — a Coupled Networks Perspective,” IEEE Trans. Visualization and Computer Graphics, vol. 31, no. 1, pp. 251–261, Jan. 2025, doi: 10.1109/TVCG.20 24.3456392.
[12] L. Zheng, Quanxue Guan, X. Wang, Y. Luo, and Y. Wu, “A Robust Resonance Suppression Method for Linear Tooth Belt Drive With Variable Resonance Frequency,” IEEE Trans. Ind. Electron., vol. 71, no. 9, pp. 10346–10355, Sep. 2024, doi: 10.1109/TIE.2023.3342318.
[11] S. Mao, Y. Wang, Quanxue Guan, and Y. Xu, “Structural Charging and Replenishment Policies for Battery Swapping Charging System Operation Under Uncertainty,” IEEE Trans. Intell. Transport. Syst., vol. 24, no. 12, pp. 14598–14609, Dec. 2023, doi: 10.1109/TITS.2023.3298320.
[10] C. Chen, Q. Guan, Quanxue Guan, X. Jin, and Z. Shi, “A Wavenumber Domain Reflectometry Approach to Locate and Image Line-Like Soft Faults in Cables,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–12, 2023, doi: 10.1109/TIM.2023.3322999.
[9] Z. Pan, X. Wang, Quanxue Guan, Y. Chen, and L. Tian, “Adaptive current harmonics suppression strategy for grid-tie inverters,” ISA Transactions, vol. 128, pp. 698–710, Sep. 2022, doi: 10.1016/j.isatra.2021.08.045.
[8] A. Sarajian, C. Garcia, Quanxue Guan*, P. Wheeler et al., “Overmodulation Methods for Modulated Model Predictive Control and Space Vector Modulation,” IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4549–4559, Apr. 2021, doi: 10.1109/TPEL.2020.3023927.
[7] X. Wang, Q. Huang, B. Zhang, D. Chen, and Quanxue Guan*, “Z-domain modeling of peak current mode control for full-bridge DC-DC buck converters,” J. Power Electron., vol. 21, no. 1, pp. 27–37, Jan. 2021, doi: 10.1007/s43236-020-00157-w.
[6] Z. Zhao, J. Zhang, B. Yan, R. Cheng, C-S. Lai, L. Huang, Quanxue Guan, and L. Lai, “Decentralized Finite Control Set Model Predictive Control Strategy of Microgrids for Unbalanced and Harmonic Power Management,” IEEE ACCESS, vol. 2020, no. 19, pp. 1–11, Jan. 2016. DOI: 10.1109/ACCESS.2020.
[5] L. Chen, A. Costabeber, L. Tarisciotti, Quanxue Guan*, P. Wheeler, and P. Zanchetta, “Phase-Shift-Modulation for a Current-Fed Isolated DC-DC Converter in More Electric Aircrafts,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8528–8543, Sep. 2019. DOI: 10.1109/TPEL.2018. 2889861.
[4] Quanxue Guan, P. Wheeler, O. Simon, Q. Guan, and J. Clare, “Geometrical Visualization of Indirect Space Vector Modulation for Matrix Converters Operating with Abnormal Supplies,” IET Power Electron., vol. 12, no. 15, pp. 4023–4033, 18 December 2019. DOI: 10.1049/iet-pel.2019. 0406.
[3] Quanxue Guan, P. Yang, Q. Guan, X. Wang, and Q. Wu, “A singular Value Decomposition-based Space Vector Modulation to Reduce the Output Common-Mode Voltage of Direct Matrix Converters,” Journal of Power Electronics, vol. 2016, no. 3, pp. 936–945, May, 2016. DOI: 10.6113/JPE.2016.16.3.936.
[2] Quanxue Guan, P. Wheeler, Q. Guan, and P. Yang, “Common-Mode Voltage Reduction for Matrix Converters Using All the Available Switch States,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8247–8259, Dec. 2016. DOI: 10.1109/TPEL.2016.2515645.
[1] W. Chen, Q. Guan, S. Jiang, Quanxue Guan, and T. Huang, “Joint QoS Provisioning and Congestion Control for Multi-Hop Wireless Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2016, no. 19, pp. 1–11, Jan. 2016. DOI: 10.1186/s13638-016- 0519-2.
• 部分会议论文
[18] Quanxue Guan, P. Liao, L. Rubino, W. Jiang, L. Zheng, and X. Li, “Improved Model Predictive Control for Dual Active Bridge Converters with Variable Frequency Phase Shift Modulation”, in 2025 IEEE International Conference on Electrical Energy Conversion Systems and Control (IEEE IEECSC 2025).
[17] W. Jiang, P. Liao, L. Zheng, Quanxue Guan*, Y. Mou, and X. Tan, “Model Predictive Control with Hybrid Variable Frequency and Phase Shift Modulation Accounting for Implementation Constraints”, in 2025 IEEE International Conference on Electrical Energy Conversion Systems and Control (IEEE IEECSC 2025).
[16] P. Liao, Quanxue Guan*, Y. Mou, L. Zhuang, L. Zheng, and X. Li, “Model Predictive Control with Adaptive Frequency and Phase-shift Steps for Dual Active Bridge Converters”, in 40th CAA YAC, 2025.
[15] Quanxue Guan, P. Liao, L. Rubino, W. Jiang, Y. Mou, and X. Li, “Model Predictive Control for Dual Active Bridge Converters in Light Load Operation”, in 40th CAA YAC, 2025.
[14] Quanxue Guan, J. Hu, X. Hu, and Di Zhou, “Open-Circuit Fault Diagnosis for Power Modules Based on Light Gradient Boosting Machine” in IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society, Nov. 2024, pp. 1–6.
[13] X. Hu, J. Hu, Quanxue Guan*, Y. Zhang, Q. Wang, D. Zhou, “An Open-Circuit Fault Diagnosis Method for Charging Piles Based on Attention Mechanism,” in IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society, Nov. 2024, pp. 1–6.
[12] B. Tian, X. Wang, D. Chen, J. Xu, Quanxue Guan, and Y. Mou, “Design and Characteristics of Thermoelectric and Liquid Cooling Composite Active Heat Dissipation of Power Electronics,” in 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Aug. 2024, pp. 1–5. doi: 10.1109/ICEPT63120.2024.10668735.
[11] D. Chen, B. Tian, X. Wang, J. Xu, Quanxue Guan, and Y. Mou, “Simulation of Electrojet Printing of Nano Metal Paste as Interconnect Bonding Intermediate,” in 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Aug. 2024, pp. 1–5. doi: 10.1109/ICEPT 63120.2024.10668485.
[10] Quanxue Guan, Q. Liu, D. Zhou, Y. Xu, and X. Tan, “Short-Term EV Charging Load Predicting Based on Adaptive VMD and LSTM Methods,” in IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2023, pp. 1–6. doi: 10.1109/IECON51785.2023.103 12686.
[9] C. Chen, Q. Guan, Quanxue Guan, X. Jin, and Z. Shi, “Localization and Imagination of Line-like Soft Faults in Transmission Lines,” in 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), Apr. 2023, pp. 1539–1543. doi: 10.1109/ACPEE56931.2023.10135559.
[8] A. Sarajian, Quanxue Guan*, P. Wheeler, D. A. Khaburi, R. Kennel, and J. Rodriquez, “Current Sensorless Model Predictive Control of Matrix Converter With Zero Common-Mode Voltage,” in IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2022, pp. 1–6. doi: 10.1109/IECON49645.2022.9968351.
[7] A. Sarajian, Quanxue Guan, P. Wheeler, D. A. Khaburi, R. Kennel, and J. Rodriquez, “A Current Sensorless Computationally Efficient Model Predictive Control for Matrix Converters,” in IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2022, pp. 1–6. doi: 10.1109/IECON49645.2022.9969053.
[6] Quanxue Guan, L. Rubino, Z. Wang and S. Bozhko, “Design and Implementation of GaN-based Dual-Active-Bridge DC/DC Converters,” in Proc. IEEE IECON’20, (Singapore), pp. 2901–2906, 2020.
[5] A. Sarajian, Quanxue Guan*, P. Wheeler, Davood A. Khaburi, R. Kennel and J. Rodriquez, “Over-modulation Method of Modulated Model Predictive Control for Matrix Converters,” in Proc. IEEE IECON’20, (Singapore), pp. 4624–4629, 2020.
[4] M. A.A. Mohamed, Quanxue Guan, and M. Rashed, “Control of DC-DC Converter for Interfacing Supercapcitors Energy storage to DC Micro Grids,” in IEEE Int. Conf. Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles - Int. Transportation Electrification Conf. (ESARS-ITEC)), (Nottingham, UK), pp. 1–8, 2018. DOI: 10.1109/ESARS-ITEC.2018.8607327.
[3] Quanxue Guan, X. Wang, Z. Zhao, and L. Wang, “An SVD-based SVM with Common-Mode Voltage Reduction for Direct Matrix Converters,” in Proc. 9th Int. Conf. Power Electron. - ECCE Asia (ICPE-ECCE Asia’15), (Soul, Korea), pp. 2697–2700, 2015. DOI:10.1109/ ICPE.2015.7168150.
[2] Quanxue Guan, P. Yang, Q. Guan, and X. Wang, “SVD-based Indirect Space Vector Modulation with Feedforward Compensation for Matrix Converters,” in Proc. IEEE IECON '13, (Vienna, Austrian), pp. 4955–4960,2013. DOI:10.1109/IECON.2013.6699937.
[1] Quanxue Guan, P. Yang, X. Wang, and X. Zhang, “Stability Analysis of Matrix Converter with Constant Power Loads and LC Input Filter,” in Proc. 7th IEEE Int. Power Electron. and Motion Control Conf. (IPEMC’12), vol. 2, (Harbin, China), pp. 900–904, 2012. DOI:10.1109/IPEMC.2012. 6258974.
• 专利
[18] 官权学,张思涵,张博浩,范玉千,石伯栋,谭晓军,“一种用于锂电池膨胀力评估的外部加压装置”,实用新型专利。申请号:202520383462X,受理日期: Mar. 06, 2025。
[17] 官权学,张思涵,范玉千,胡亮,石伯栋,谭晓军,“一种圆柱体锂电池的空气冷却装置”,实用新型专利。申请号:2025203834564,受理日期: Mar. 06, 2025。
[16] 官权学,张博浩,张思涵,范玉千,石伯栋,谭晓军,“一种用于锂电池充放电测试的多功能夹具装置”,实用新型专利。申请号:2025203755774,受理日期: Mar. 05, 2025。
[15] 官权学,胡嘉蓓,石伯栋,莫善军,刘婕,谭晓军,“一种基于领域自适应和注意力机制的充电模块开路故障诊断方法”,国家发明专利。申请号:2025102245196,受理日期: Feb. 27, 2025。
[14] 官权学,胡嘉蓓,石伯栋,莫善军,沈浩,谭晓军,“一种基于改进迁移轻梯度提升机的充电模块开路故障快速诊断方法及系统”,国家发明专利。申请号:2025102082273,受理日期: Feb. 25, 2025。
[13] 官权学,张思涵,刘昊文,党政扬,石伯栋,谭晓军,“一种基于充电桩的锂电池电化学阻抗谱在线测量与估计方法及系统”,国家发明专利。申请号:202510211842X,受理日期: Feb. 25, 2025。
[12] 官权学,张博浩,张思涵,石伯栋,谭晓军,“一种基于模型短分支推演的锂电池充电策略样本效率增强方法”,国家发明专利。申请号:2025102074968,受理日期: Feb. 25, 2025。
[11] 官权学,陶少聪,石伯栋,曾海鹏,谭晓军,“一种结合序列分解与特征提取的电动汽车充电负荷预测方法、系统及存储介质”,国家发明专利。申请号:2024115900177,受理日期: Nov. 08, 2024。
[10] 官权学,胡雪,石伯栋,黎卓坚,谭晓军,“双有源桥变换器的模型预测控制方法及装置”,国家发明专利。授权专利号:ZL 2024 1 0540522.4,受理日期: Apr. 30, 2024。授权公告号: CN 118473226 B,授权公告日: Mar. 14, 2025。
[9] 官权学,胡嘉蓓,胡雪,石伯栋,谭晓军,“一种充电电源模块开路故障的诊断方法和系统”,国家发明专利。授权专利号:ZL 2024 1 0298131.6,受理日期: Mar. 15, 2024。授权公告号:CN 118068219 B,授权公告日: Feb. 07, 2025。
[8] 官权学,邓志克,侯鸿斌,施佳抄,“一种基于氮化镓功率器件的双输出电源”,实用新型专利。授权专利号:ZL 2023 2 2213523.1,受理日期: Aug. 16, 2023。授权公告号:CN 220570454 U,授权公告日: Mar. 08, 2024。
[7] 官权学,何文烈,冯君璞,雷雯霆,龙江游,“一种基于氮化镓器件的隔离型高频双有源桥变换器”,国家发明专利,授权专利号:ZL 2020 1 0630899.0,受理日期: Jun. 03, 2020。授权公告号: CN 113346752 B,授权公告日: Feb. 18, 2025。
[6] 官权学,何文烈,冯君璞,雷雯霆,龙江游,“一种基于氮化镓器件的隔离型高频双有源桥变换器”,国家实用新型专利,授权专利号:2020 2 1276962.7,受理日期: Jun. 04, 2020。授权公告号: CN212210855U, 授权日期: Dec. 22, 2020。
[5] 官权升,余德成,陈伟琦,官权学, “基于最晚离开时刻和最小维的点协调无线媒介接入方法”,国家发明专利,授权专利号:2017 1 1468581.1,受理日期: Dec. 29, 2017,授权公告号: CN 107959980 B, 授权日期: Nov. 15, 2019
[4] 杜汝全; 官权升; 官权学; 陈伟琦, “一种 GaN 的 DC-DC 测试装置”,国家实用新型专利,授权专利号:2017 2 1107456.3,受理日期: Aug. 31, 2017. 授权公告号: CN 207516495 U, 授权日期: Jun. 19, 2018。
[3] 官权学,官权升, “一种基于双向电力半导体开关模块的三相四线矩阵变换器.” 国家实用新型专利,授权专利号:2015 2 0721665.1,受理日期:Sep. 18 2015。授权公告号:CN 205070807U,公告日: Mar. 02, 2016。
[2] 官权学,官权升, “一种电力变换器检测控制板.” 国家实用新型专利,授权专利号:2015 2 0722196.5,受理日期: Sep. 18, 2015。授权公告号:CN204989888U,公告日: Jan. 20, 2016。
[1] 官权学,官权升, “一种使用矩阵变换器的共模电压抑制调制方法.” 国家发明专利,授权专利号:ZL 2015 1 031747 7.7,受理日期: Jun. 10, 2015。授权公告号:CN104935180 B,授权公告日: Mar. 03, 2017。
• 出版著作
[2]《新型储能技术创新路线图》,出版日期:2024-10-01,ISBN:
978-7-111-76174-7,出版社:机械工业出版社,角色:编委成员。
[1]《广东省新能源汽车技术创新路线图(第二册)》,出版日期:2023-04-01,ISBN:
978-7-111-72682-1,出版社:机械工业出版社,角色:编委成员。
荣誉获奖情况
– “鹏城孔雀计划”特聘岗位,2023
– 入选中山大学“百人计划”引进人才,2021
– 广州市菁英计划留学项目奖学金,2013
主要兼职
Member, IEEE; Member, IEEE Power Electronics Society; Member, IEEE Power & Energy Society; Member, IEEE Industrial Electronics Society; Member, IEEE Communications Society; Member, IEEE Smart Grid Community
社会服务
IEEE Transactions on Power Electronics, IEEE Transactions on Industrial Electronics, IEEE Journal of Emerging and Selected Topics in Power Electronics, IEEE Transactions on Transportation Electrification, IEEE Transactions on Instrumentation & Measurement, IEEE Transactions on Control Systems Technology, ISA Transactions, Applied Energy, Journal of Power Electronics, Energies, Electric Power Components and Systems等期刊的审稿人。
联系方式
电子邮箱:guanqx3@mail.sysu.edu.cn 或 quanxue.guan@gmail.com
本人长期招聘特聘副研究员,欢迎电邮咨询或访问https://sites.google.com/site/guanquanxue/